
Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

A Pyramid Of (Formal) Software Verification

Martin Brain and Elizabeth Polgreen

City St. George, University of London
martin.brain@city.ac.uk
University of Edinburgh

elizabeth.polgreen@ed.ac.uk

February 22, 2025

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

I’m Going To Say Some Things...

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

...but not as many things as I would like to say

These slides:
http://polgreen.github.io/pdfs/pyramid-slides.pdf

Tutorial paper:
http://polgreen.github.io/pdfs/pyramid-paper.pdf

Tutorial on youtube:
https://youtu.be/BlGZuQIESRU?si=qEzNGt6wvqtq91m1

http://polgreen.github.io/pdfs/pyramid-slides.pdf
http://polgreen.github.io/pdfs/pyramid-paper.pdf
https://youtu.be/BlGZuQIESRU?si=qEzNGt6wvqtq91m1

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

1 Verification

2 Automatic Verification

3 Under-Approximate

4 Human-Assisted

5 Over-Approximate

6 Bringing It All Together

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

What is Verification?

A process that produces evidence that

a system complies with a specification.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Role of System and Specification

Properties
(Temporal logic)

Design
(Automata)

Implementation
(Code)

System

Spec.

Verify

System

Spec.

Verify

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Role of System and Specification

Properties
(Temporal logic)

Design
(Automata)

Implementation
(Code)

System

Spec.

Verify

System

Spec.

Verify

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Role of System and Specification

Properties
(Temporal logic)

Design
(Automata)

Implementation
(Code)

System

Spec.

Verify

System

Spec.

Verify

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Verification vs. Validation

Verification

Are We Building The Thing Right?

Validation

Are We Building The Right Thing?

“Correctly building the wrong thing!” – verification without validation!

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Role of System and Specification

Properties
(Temporal logic)

Design
(Automata)

Implementation
(Code)

System

Spec.

Verify

System

Spec.

Verify

Validate

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

When To Verify

Writing
Verified
Software

VS.
Verifying
Written
Software

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

System and Specification

Software

Firmware

Hardware

Assertions

Undef. B.

Reachable

Invariants

Info flow

Resources

Terminate

Functional

IExistential
IUniversal
IHyper

IBuilt in
IAnnotation
IExternal

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

System and Specification

Software

Firmware

Hardware

Assertions

Undef. B.

Reachable

Invariants

Info flow

Resources

Terminate

Functional

IExistential
IUniversal
IHyper

IBuilt in
IAnnotation
IExternal

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

System and Specification

Software

Firmware

Hardware

Assertions

Undef. B.

Reachable

Invariants

Info flow

Resources

Terminate

Functional

IExistential
IUniversal
IHyper

IBuilt in
IAnnotation
IExternal

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Why bother?

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Why bother?

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Why bother?

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Why bother?

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Why bother?

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Why bother?

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

...

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

1 Verification

2 Automatic Verification

3 Under-Approximate

4 Human-Assisted

5 Over-Approximate

6 Bringing It All Together

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Verification Tools

The Key Question

Does (every run of) system P satisfy specification S?

Spec.

System

Verification!

CPU

FTE

:-D

}-[

???

If program and specification are formal → can automate!

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Verification Tools

The Key Question

Does (every run of) system P satisfy specification S?

Spec.

System

Verification!

CPU

FTE

:-D

}-[

???

If program and specification are formal → can automate!

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Verification Tools

The Key Question

Does (every run of) system P satisfy specification S?

Spec.

System

Verification!

CPU

FTE

:-D

}-[

???

If program and specification are formal → can automate!

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Ideal Tool

The ideal verification tool . . .

fully automated

never misses bugs

never gives false alarms

Spec.

System

Verification!

CPU

FTE

:-D

}-[

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Key Trade-Off

Turing’s Work Implies . . .

It is impossible to build an automatic verification system for:
any specification that includes reachability

all software including loops / recursion

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Key Trade-Off

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Key Trade-Off

Choosing Verification Tools

1 Pick two attributes based on project:
automatic, no missed bugs, no false alarms

2 Use CPU and human effort to get enough of the third.
(for your specific software/specifications.)

OR

Work out which one you hate the least:

False Alarms Sentencing potential bug reports.

Missed Bugs Measuring coverage and writing harnesses.

Manual Supplying annotation or proof.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Key Trade-Off

Choosing Verification Tools

1 Pick two attributes based on project:
automatic, no missed bugs, no false alarms

2 Use CPU and human effort to get enough of the third.
(for your specific software/specifications.)

OR

Work out which one you hate the least:

False Alarms Sentencing potential bug reports.

Missed Bugs Measuring coverage and writing harnesses.

Manual Supplying annotation or proof.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Pyramid Model of Software Verification

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

The Pyramid Model of Software Verification

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Six Schools: Over-approximate

Static Analysis, e.g., Lint

Spurious warnings are fine, as long as there aren’t too many
Lexical scanners: look for patterns in code that are likely to be
bugs

Abstract Interpretation, e.g., Infer

Run the program with representations of sets of possible values
(the domain)
e.g., intervals

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Six Schools: Over-approximate

Static Analysis, e.g., Lint

Spurious warnings are fine, as long as there aren’t too many
Lexical scanners: look for patterns in code that are likely to be
bugs

Abstract Interpretation, e.g., Infer

Run the program with representations of sets of possible values
(the domain)
e.g., intervals

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Six Schools: Under-approximate

Testing and Symbolic Execution e.g., KLEE

Run the program!
Or, run the program with symbols instead of concrete inputs

Model checking e.g., CBMC

Build a model of the program.
Use the model to build a formula that represents all paths in
the program.
Use a SAT solver (or BDDs) to see if there is a path that
violates the spec.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Six Schools: Under-approximate

Testing and Symbolic Execution e.g., KLEE

Run the program!
Or, run the program with symbols instead of concrete inputs

Model checking e.g., CBMC

Build a model of the program.
Use the model to build a formula that represents all paths in
the program.
Use a SAT solver (or BDDs) to see if there is a path that
violates the spec.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Six Schools: Human-assisted

Deductive Verification e.g., SPARK

Describe the set of states with a predicate
Use logic to link these together (e.g., Hoare logic)
Use proof by induction for loops (unbounded proof!)

Functional Verification e.g., Agda

Define a programming language that only lets you build correct
programs
Specifications are captured in types
Only good for verifying programs as you write them

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Six Schools: Human-assisted

Deductive Verification e.g., SPARK

Describe the set of states with a predicate
Use logic to link these together (e.g., Hoare logic)
Use proof by induction for loops (unbounded proof!)

Functional Verification e.g., Agda

Define a programming language that only lets you build correct
programs
Specifications are captured in types
Only good for verifying programs as you write them

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Six Schools
Over-Approximate Under-Approximate Human-Assisted

Static
Analysis

Abstract
Interpretation

Testing &
Symbolic
Execution

Model
Checking

Deductive
Verification

Functional
Verification

Program Procedural or
O.O.

Procedural Procedural or
O.O.

Procedural or
O.O.

Subsets of
procedural

Functional

Commmon
Means of

Specification

Builtin Annotation
linked to the
abstraction

Generally
annotation

Annotation or
external

Annotation Type as
annotation

Common
Type of

Specification

Data flow,
aliasing,

type, shape,
taint

Value, shape,
resource,
data flow

Value,
WCET,
resource

Value,
temporal,

modal,
liveness

Value, shape,
termination,

resource

Type,
termination

Mathematical
Foundations

Ad-hoc /
operational
semantics

Order theory Ad-hoc /
transition
systems

Transition
systems

Logic Type theory

User Skill
Required

Minimal Low/Medium Low Medium High Very high

Compute
Required

Minimal Low/Medium
upwards

Medium
upwards

Medium/High
upwards

Low/Medium Low

Typical
Output

Algorithm
dependent

Alarms or
abstract
domains

Error traces Error traces Proof or local
counter-
examples

Type-
checking

errors
Major

Systems
Lint[?],

Coverity[?],
Fortify[?],

FindBugs[?],
CPPCheck[?]

Astrée[?],
Polyspace[?],
Infer[?], Code
Contracts[?]

CREST[?],
JPF[?],
Pex[?],

KLEE[?]

CBMC[?],
Blast[?],
*SMV[?],

CPAchecker[?]

SPARK[?],
Dafny[?],

Frama-C[?],
Malpas[?],

Esc/Java[?]

Coq[?],
PVS [?],
Agda[?],

Isabelle/Hol[?]

Table: Cultural attributes of the six schools.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Six Schools

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Running Example: Formalise and Verify

Spec.

1 All array accesses in
bounds

2 Returned last is in a

3 If found then a[last] is
target

System

(int, int)

count (Array a, int target)

{

int found = 0;

int last = -1;

int i = 0;

while (i < a.length()) {

if (a[i] == target) {

found = found + 1;

last = i;

}

i = i + 1;

}

return (found, last);

}

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Running Example: Formalise and Verify

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

1 Verification

2 Automatic Verification

3 Under-Approximate

4 Human-Assisted

5 Over-Approximate

6 Bringing It All Together

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Under-Approximate Family Tree

Testing

Symbolic Execution

Explicit state

Symbolic state

BMC / k-Induction

CEGAR / Interpolation

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Under-Approximate Family Tree

Testing

Symbolic Execution

Explicit state

Symbolic state

BMC / k-Induction

CEGAR / Interpolation

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Foundations (Ideas)

Can run one test case which gives an execution trace...

Can we generalise this to “similar” traces?
Use logic to describe a set of traces (that take the same path).

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Foundations (Ideas)

Can run one test case which gives an execution trace...
Can we generalise this to “similar” traces?

Use logic to describe a set of traces (that take the same path).

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Foundations (Ideas)

Can run one test case which gives an execution trace...
Can we generalise this to “similar” traces?
Use logic to describe a set of traces (that take the same path).

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Foundations (Symbols)

X is set of variables, I ⊂ X is a set of input variables
Expr(I) is the set of expressions over I
Prd(I) is the set of predicates over I

Representation A map Env : X → Expr(I) and a set PC ⊂ Prd(I).

Assign If v = x op y

then update Env(v) with Env(x) op Env(y).

Branch If branching on x rel y

then add Env(x) rel Env(y) to PC .

Check Satisfiability check PC .
If unsat then discard the trace.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Foundations (Symbols)

X is set of variables, I ⊂ X is a set of input variables
Expr(I) is the set of expressions over I
Prd(I) is the set of predicates over I

Representation A map Env : X → Expr(I) and a set PC ⊂ Prd(I).

Assign If v = x op y

then update Env(v) with Env(x) op Env(y).

Branch If branching on x rel y

then add Env(x) rel Env(y) to PC .

Check Satisfiability check PC .
If unsat then discard the trace.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Foundations (Symbols)

X is set of variables, I ⊂ X is a set of input variables
Expr(I) is the set of expressions over I
Prd(I) is the set of predicates over I

Representation A map Env : X → Expr(I) and a set PC ⊂ Prd(I).

Assign If v = x op y

then update Env(v) with Env(x) op Env(y).

Branch If branching on x rel y

then add Env(x) rel Env(y) to PC .

Check Satisfiability check PC .
If unsat then discard the trace.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Foundations (Symbols)

X is set of variables, I ⊂ X is a set of input variables
Expr(I) is the set of expressions over I
Prd(I) is the set of predicates over I

Representation A map Env : X → Expr(I) and a set PC ⊂ Prd(I).

Assign If v = x op y

then update Env(v) with Env(x) op Env(y).

Branch If branching on x rel y

then add Env(x) rel Env(y) to PC .

Check Satisfiability check PC .
If unsat then discard the trace.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Foundations (Symbols)

X is set of variables, I ⊂ X is a set of input variables
Expr(I) is the set of expressions over I
Prd(I) is the set of predicates over I

Representation A map Env : X → Expr(I) and a set PC ⊂ Prd(I).

Assign If v = x op y

then update Env(v) with Env(x) op Env(y).

Branch If branching on x rel y

then add Env(x) rel Env(y) to PC .

Check Satisfiability check PC .
If unsat then discard the trace.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

L1

L2

L3

L4

VC2}-[

VC3

VC1

L5 ...

L8

L4

...

...

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

L1

L2

L3

L4

VC2}-[

VC3

VC1

L5 ...

L8

L4

...

...

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

L1

L2

L3

L4

VC2

}-[

VC3

VC1

L5 ...

L8

L4

...

...

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

L1

L2

L3

L4

VC2}-[

VC3

VC1

L5 ...

L8

L4

...

...

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

L1

L2

L3

L4

VC2}-[

VC3

VC1

L5 ...

L8

L4

...

...

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

L1

L2

L3

L4

VC2}-[

VC3

VC1

L5 ...

L8

L4

...

...

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

L1

L2

L3

L4

VC2}-[

VC3

VC1

L5 ...

L8

L4

...

...

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

L1

L2

L3

L4

VC2}-[

VC3

VC1

L5 ...

L8

L4

...

...

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Symbolic Execution: Pros and Cons

Pros

Counter-examples!

Concretisation

Anytime

Cons

Combinatorial explosion!

Non-modular

Need complete program

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

1 Verification

2 Automatic Verification

3 Under-Approximate

4 Human-Assisted

5 Over-Approximate

6 Bringing It All Together

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Human-Assisted Family Tree

Functional

Predicate Transformers

Hoare Logic

Separation Logic

Incorrectness Logic

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Human-Assisted Family Tree

Functional

Predicate Transformers

Hoare Logic

Separation Logic

Incorrectness Logic

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Foundations (Ideas)

Describe the set of possible states (at a program location) with a predicate

Use logic to link these together...
and use proof by induction for loops!

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Foundations (Ideas)

Describe the set of possible states (at a program location) with a predicate
Use logic to link these together...

and use proof by induction for loops!

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Foundations (Ideas)

Describe the set of possible states (at a program location) with a predicate
Use logic to link these together...
and use proof by induction for loops!

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Foundations (Symbols)

Hoare Triples

{Pre} Program {Post}

“If the state of the program meets the precondition (Pre is true)
then after Program has been run the state will meet the
postcondition (Post is true)”

{Inv ∧ Cond} Body {Inv}
{Inv} while (Cond) Body {Inv ∧ ¬Cond}

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Foundations (Symbols)

Hoare Triples

{Pre} Program {Post}

“If the state of the program meets the precondition (Pre is true)
then after Program has been run the state will meet the
postcondition (Post is true)”

{Inv ∧ Cond} Body {Inv}
{Inv} while (Cond) Body {Inv ∧ ¬Cond}

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

Prove P Assume PAssume P

L4: i < a.length()L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

Prove PVC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

P = VC3

???

???

:-D

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

Prove P Assume PAssume P

L4: i < a.length()L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

Prove PVC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

P = VC3

???

???

:-D

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

Prove P Assume PAssume P

L4: i < a.length()L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

Prove PVC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

P = VC3

???

???

:-D

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

Prove P Assume PAssume P

L4: i < a.length()L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

Prove PVC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

P = VC3
∧0 ≤ i

:-D

???

:-D

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

Prove P Assume PAssume P

L4: i < a.length()L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

Prove PVC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

P = VC3
∧0 ≤ i

:-D

???

:-D

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

Prove P Assume PAssume P

L4: i < a.length()L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

Prove PVC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

P = VC3
∧0 ≤ i

:-D

???

:-D

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Deductive Verification: Pros and Cons

Pros

Certainty

Scalable (compute)

Incremental

Cons

Maintainance

Scalable (human)

False vs. not provable

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

1 Verification

2 Automatic Verification

3 Under-Approximate

4 Human-Assisted

5 Over-Approximate

6 Bringing It All Together

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Over-Approximate Family Tree

Static Analysis

Abstract Interpretation

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Over-Approximate Family Tree

Static Analysis

Abstract Interpretation

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Ideas)

Want to reason about all possible executions...

What if we run the program with sets of possible values?
That’s too big and too slow but what if we run the program with
representations of sets of possible values?

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Ideas)

Want to reason about all possible executions...
What if we run the program with sets of possible values?

That’s too big and too slow but what if we run the program with
representations of sets of possible values?

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Ideas)

Want to reason about all possible executions...
What if we run the program with sets of possible values?
That’s too big and too slow but what if we run the program with
representations of sets of possible values?

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Symbols)

X is set of variables
Env = X → Q is set of program states
Instr = Env → Env is set of program instructions

Representation Set L of representations γ : L→ 2Env

l1 v l2 ⇔ γ(l1) ⊆ γ(l2)

� i ∈ [0, 4], j ∈ [0, 4], n ∈ [5, 5],m ∈ [5, 5]�∈ L

Transform T : Instr × L→ L with f (γ(l)) ⊆ γ(T (f , l))

T (i=i+1,� . . . i ∈ [0, 4] · · · �) =� . . . i ∈ [1, 5] · · · �

Merge t : L× L→ L with l1 v l1 t l2, l2 v l1 t l2

� . . . i ∈ [0, 4] · · · � t � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, 5] · · · �

Widen 5 : L× L→ L with l1 v l1 t l2, l2 v l1 t l2
“guarantees termination”

� . . . i ∈ [0, 4] · · · � 5 � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, inf] · · · �

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Symbols)

X is set of variables
Env = X → Q is set of program states
Instr = Env → Env is set of program instructions

Representation Set L of representations γ : L→ 2Env

l1 v l2 ⇔ γ(l1) ⊆ γ(l2)

� i ∈ [0, 4], j ∈ [0, 4], n ∈ [5, 5],m ∈ [5, 5]�∈ L

Transform T : Instr × L→ L with f (γ(l)) ⊆ γ(T (f , l))

T (i=i+1,� . . . i ∈ [0, 4] · · · �) =� . . . i ∈ [1, 5] · · · �

Merge t : L× L→ L with l1 v l1 t l2, l2 v l1 t l2

� . . . i ∈ [0, 4] · · · � t � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, 5] · · · �

Widen 5 : L× L→ L with l1 v l1 t l2, l2 v l1 t l2
“guarantees termination”

� . . . i ∈ [0, 4] · · · � 5 � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, inf] · · · �

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Symbols)

X is set of variables
Env = X → Q is set of program states
Instr = Env → Env is set of program instructions

Representation Set L of representations γ : L→ 2Env

l1 v l2 ⇔ γ(l1) ⊆ γ(l2)
� i ∈ [0, 4], j ∈ [0, 4], n ∈ [5, 5],m ∈ [5, 5]�∈ L

Transform T : Instr × L→ L with f (γ(l)) ⊆ γ(T (f , l))

T (i=i+1,� . . . i ∈ [0, 4] · · · �) =� . . . i ∈ [1, 5] · · · �

Merge t : L× L→ L with l1 v l1 t l2, l2 v l1 t l2

� . . . i ∈ [0, 4] · · · � t � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, 5] · · · �

Widen 5 : L× L→ L with l1 v l1 t l2, l2 v l1 t l2
“guarantees termination”

� . . . i ∈ [0, 4] · · · � 5 � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, inf] · · · �

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Symbols)

X is set of variables
Env = X → Q is set of program states
Instr = Env → Env is set of program instructions

Representation Set L of representations γ : L→ 2Env

l1 v l2 ⇔ γ(l1) ⊆ γ(l2)
� i ∈ [0, 4], j ∈ [0, 4], n ∈ [5, 5],m ∈ [5, 5]�∈ L

Transform T : Instr × L→ L with f (γ(l)) ⊆ γ(T (f , l))

T (i=i+1,� . . . i ∈ [0, 4] · · · �) =� . . . i ∈ [1, 5] · · · �
Merge t : L× L→ L with l1 v l1 t l2, l2 v l1 t l2

� . . . i ∈ [0, 4] · · · � t � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, 5] · · · �

Widen 5 : L× L→ L with l1 v l1 t l2, l2 v l1 t l2
“guarantees termination”

� . . . i ∈ [0, 4] · · · � 5 � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, inf] · · · �

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Symbols)

X is set of variables
Env = X → Q is set of program states
Instr = Env → Env is set of program instructions

Representation Set L of representations γ : L→ 2Env

l1 v l2 ⇔ γ(l1) ⊆ γ(l2)
� i ∈ [0, 4], j ∈ [0, 4], n ∈ [5, 5],m ∈ [5, 5]�∈ L

Transform T : Instr × L→ L with f (γ(l)) ⊆ γ(T (f , l))
T (i=i+1,� . . . i ∈ [0, 4] · · · �) =� . . . i ∈ [1, 5] · · · �

Merge t : L× L→ L with l1 v l1 t l2, l2 v l1 t l2

� . . . i ∈ [0, 4] · · · � t � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, 5] · · · �

Widen 5 : L× L→ L with l1 v l1 t l2, l2 v l1 t l2
“guarantees termination”

� . . . i ∈ [0, 4] · · · � 5 � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, inf] · · · �

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Symbols)

X is set of variables
Env = X → Q is set of program states
Instr = Env → Env is set of program instructions

Representation Set L of representations γ : L→ 2Env

l1 v l2 ⇔ γ(l1) ⊆ γ(l2)
� i ∈ [0, 4], j ∈ [0, 4], n ∈ [5, 5],m ∈ [5, 5]�∈ L

Transform T : Instr × L→ L with f (γ(l)) ⊆ γ(T (f , l))
T (i=i+1,� . . . i ∈ [0, 4] · · · �) =� . . . i ∈ [1, 5] · · · �

Merge t : L× L→ L with l1 v l1 t l2, l2 v l1 t l2

� . . . i ∈ [0, 4] · · · � t � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, 5] · · · �

Widen 5 : L× L→ L with l1 v l1 t l2, l2 v l1 t l2
“guarantees termination”

� . . . i ∈ [0, 4] · · · � 5 � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, inf] · · · �

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Symbols)

X is set of variables
Env = X → Q is set of program states
Instr = Env → Env is set of program instructions

Representation Set L of representations γ : L→ 2Env

l1 v l2 ⇔ γ(l1) ⊆ γ(l2)
� i ∈ [0, 4], j ∈ [0, 4], n ∈ [5, 5],m ∈ [5, 5]�∈ L

Transform T : Instr × L→ L with f (γ(l)) ⊆ γ(T (f , l))
T (i=i+1,� . . . i ∈ [0, 4] · · · �) =� . . . i ∈ [1, 5] · · · �

Merge t : L× L→ L with l1 v l1 t l2, l2 v l1 t l2
� . . . i ∈ [0, 4] · · · � t � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, 5] · · · �

Widen 5 : L× L→ L with l1 v l1 t l2, l2 v l1 t l2
“guarantees termination”
� . . . i ∈ [0, 4] · · · � 5 � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, inf] · · · �

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Foundations (Symbols)

X is set of variables
Env = X → Q is set of program states
Instr = Env → Env is set of program instructions

Representation Set L of representations γ : L→ 2Env

l1 v l2 ⇔ γ(l1) ⊆ γ(l2)
� i ∈ [0, 4], j ∈ [0, 4], n ∈ [5, 5],m ∈ [5, 5]�∈ L

Transform T : Instr × L→ L with f (γ(l)) ⊆ γ(T (f , l))
T (i=i+1,� . . . i ∈ [0, 4] · · · �) =� . . . i ∈ [1, 5] · · · �

Merge t : L× L→ L with l1 v l1 t l2, l2 v l1 t l2
� . . . i ∈ [0, 4] · · · � t � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, 5] · · · �

Widen 5 : L× L→ L with l1 v l1 t l2, l2 v l1 t l2
“guarantees termination”
� . . . i ∈ [0, 4] · · · � 5 � . . . i ∈ [1, 5] · · · �=
� . . . i ∈ [0, inf] · · · �

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0][0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[1, 1] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0][0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[1, 1] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 1] [−1, 0] [0, 0]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[1, 1] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 0] [−1,−1] [0, 0]

[0, 1] [−1, 0] [0, 0]

[0, 1] [−1, 0] [0, 1]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0]

[0, 1] [−1, 0] [0, 1]

[0, 1] [−1, 0] [0, 1]

[0, 1] [−1, 0] [0, 1]

[0, 1] [−1, 0] [0, 1]

[1, 2] [−1, 0] [0, 1]

[0, 1] [−1, 0] [0, 1]

[0, 1] [−1, 0] [0, 1]

[0, 2] [−1, 1] [0, 1]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0]

[0, 2] [−1, 1] [0, 2]

[0, 2] [−1, 1] [0, 2]

[0, 2] [−1, 1] [0, 2]

[0, 2] [−1, 1] [0, 2]

[1, 3] [−1, 1] [0, 2]

[0, 3] [−1, 2] [0, 2]

[0, 2] [−1, 1] [0, 2]

[0, 2] [−1, 1] [0, 2]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[1, x + 1][−1, x − 1] [0, x]

[0, x + 1] [−1, x] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[1, x + 1][−1, x − 1] [0, x]

[0, x + 1] [−1, x] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[1, x + 1][−1, x − 1] [0, x]

[0, x + 1] [−1, x] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Running Example

L1: found = 0

L2: last = -1

L3: i = 0

L4: i < a.length()

VC1 : 0 ≤ i ≤ a.length()

L5: a[i] == target

L6: found = found + 1

L7: last = i

L8: i = i + 1

VC2 : 0 ≤ last ≤ a.length()

VC3 : found 6= 0⇒ a[last] = target

found last i

[0, 0]

[0, 0] [−1,−1]

[0, 0] [−1,−1] [0, 0]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

[1, x + 1][−1, x − 1] [0, x]

[0, x + 1] [−1, x] [0, x]

[0, x] [−1, x − 1] [0, x]

[0, x] [−1, x − 1] [0, x]

:-D

???

???

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Abstract Interpretation: Pros and Cons

Pros

Assuming independence is
an overapproximation

Can discard information
about states

Compositional / modular

Cons

When you reach >...

“Yes but why?”

Widen is hard

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

1 Verification

2 Automatic Verification

3 Under-Approximate

4 Human-Assisted

5 Over-Approximate

6 Bringing It All Together

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Process Considerations

Key Trade-Off

No false alarms / No missed bugs / Automatic

Two for free, will a reasonable amount of computation and human
effort give you enough of the third?

Considerations:

What happens if the system doesn’t meet the spec?

Who uses the evidence? For what?

Can the the system or spec be changed?

Can the tools be changed?

Are partial results useful?

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Understanding Tool Evaluation

Skip To The Results and ...

Over-Approximate Number of Alarms (proxy for false alarms)

Under-Approximate Benchmarks Solved (proxy for coverage rate)

Human-Approximate LoC of Annotation (proxy for human effort)

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Limits of Verification

Biased Personal Opinion

For verification to be “useful”,
the specification must be “simpler” than the system.

(What is the spec for cosine? What is the spec for printf? What is the spec for
getopt? What is the spec for strtod? What is the spec for time & date?)

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Conclusion : How to Pick Verification Tools

1 What is your system? What is your specification?
Are they formal? Could they be?

2 How finished / fixed are they?
“Writing verified software” vs. “Verifying written software”

3 What kinds of evidence support your goal?

4 Automatic, no missed bugs, no false alarms – pick two!

5 Fit the tool to the process or vica versa or both.

Thank you for your time and attention.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Conclusion : How to Pick Verification Tools

1 What is your system? What is your specification?
Are they formal? Could they be?

2 How finished / fixed are they?
“Writing verified software” vs. “Verifying written software”

3 What kinds of evidence support your goal?

4 Automatic, no missed bugs, no false alarms – pick two!

5 Fit the tool to the process or vica versa or both.

Thank you for your time and attention.

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Resources

These slides:
http://polgreen.github.io/pdfs/pyramid-slides.pdf

Tutorial paper:
http://polgreen.github.io/pdfs/pyramid-paper.pdf

Tutorial on youtube:
https://youtu.be/BlGZuQIESRU?si=qEzNGt6wvqtq91m1

http://polgreen.github.io/pdfs/pyramid-slides.pdf
http://polgreen.github.io/pdfs/pyramid-paper.pdf
https://youtu.be/BlGZuQIESRU?si=qEzNGt6wvqtq91m1

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Coverity scan: Static analysis.
https://scan.coverity.com/, accessed: 2024-04-10

CPPCheck: A tool for static c/c++ code analysis.
https://cppcheck.sourceforge.io/, accessed:
2024-04-10

CREST: Concolic test generation tool for c.
https://www.burn.im/crest/, accessed: 2020-22-07

FindBugs. http://findbugs.sourceforge.net/, accessed:
2020-22-07

Fortify static code analyzer. https://www.opentext.com/
products/fortify-static-code-analyzer, accessed:
2024-04-10

MALPAS software static analysis toolset.
http://malpas-global.com/, accessed: 2024-04-10

https://scan.coverity.com/
https://cppcheck.sourceforge.io/
https://www.burn.im/crest/
http://findbugs.sourceforge.net/
https://www.opentext.com/products/fortify-static-code-analyzer
https://www.opentext.com/products/fortify-static-code-analyzer
http://malpas-global.com/

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

PolySpace Code Prover. https://www.mathworks.com/
products/polyspace-code-prover.html, accessed:
2020-22-07

SPARK. https://www.adacore.com/about-spark,
accessed: 2024-04-10

Bertot, Y., Castéran, P.: Interactive theorem proving and
program development: Coq’Art: the calculus of inductive
constructions. Springer Science & Business Media (2013)

Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for
configurable software verification. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6806, pp. 184–190. Springer (2011)

Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and
automatic generation of high-coverage tests for complex

https://www.mathworks.com/products/polyspace-code-prover.html
https://www.mathworks.com/products/polyspace-code-prover.html
https://www.adacore.com/about-spark

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

systems programs. In: OSDI. pp. 209–224. USENIX
Association (2008)

Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti,
A., Micheli, A., Mover, S., Roveri, M., Tonetta, S.: The
nuxmv symbolic model checker. In: CAV. Lecture Notes in
Computer Science, vol. 8559, pp. 334–342. Springer (2014)

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., Rival, X.: The astreé analyzer. In: ESOP.
Lecture Notes in Computer Science, vol. 3444, pp. 21–30.
Springer (2005)

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles,
J., Yakobowski, B.: Frama-c - A software analysis perspective.
In: SEFM. Lecture Notes in Computer Science, vol. 7504, pp.
233–247. Springer (2012)

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe,
J.B., Stata, R.: Extended static checking for java. In: PLDI.
pp. 234–245. ACM (2002)

Havelund, K.: Java pathfinder, A translator from java to
promela. In: SPIN. Lecture Notes in Computer Science,
vol. 1680, p. 152. Springer (1999)

Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST
software verification system. In: SPIN. Lecture Notes in
Computer Science, vol. 3639, pp. 25–26. Springer (2005)

Johnson, S.C.: Lint, a c program checker. In: COMP. SCI.
TECH. REP. pp. 78–1273 (1978)

Kettl, M., Lemberger, T.: The static analyzer infer in
SV-COMP (competition contribution). In: TACAS (2).
Lecture Notes in Computer Science, vol. 13244, pp. 451–456.
Springer (2022)

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Kroening, D., Tautschnig, M.: CBMC - C bounded model

checker - (competition contribution). In: Ábrahám, E.,
Havelund, K. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 20th International Conference,
TACAS 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8413, pp. 389–391. Springer (2014)

Leino, K.R.M.: Dafny: An automatic program verifier for
functional correctness. In: LPAR (Dakar). Lecture Notes in
Computer Science, vol. 6355, pp. 348–370. Springer (2010)

Logozzo, F.: Practical specification and verification with code
contracts. In: HILT. pp. 7–8. ACM (2013)

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof
assistant for higher-order logic, vol. 2283. Springer Science &
Business Media (2002)

Verification Automatic Verification Under-Approximate Human-Assisted Over-Approximate Bringing It All Together

Norell, U.: Dependently typed programming in agda. In:
Advanced Functional Programming. Lecture Notes in
Computer Science, vol. 5832, pp. 230–266. Springer (2008)

Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype
verification system. In: CADE. Lecture Notes in Computer
Science, vol. 607, pp. 748–752. Springer (1992)

Tillmann, N., de Halleux, J.: Pex-white box test generation for
.net. In: TAP. Lecture Notes in Computer Science, vol. 4966,
pp. 134–153. Springer (2008)

	Verification
	Automatic Verification
	Under-Approximate
	Human-Assisted
	Over-Approximate
	Bringing It All Together

