A Substructural Type and Effect System

Orpheas van Rooij''> Robbert Krebbers?

LUniversity of Edinburgh

2Radboud University

February 2025

References + Effect Handlers =

Deallocatable References

alloc ::a — Refa
bar :: Ref Int — Bool
free::Refa — a
read :: Refa — a

What can go wrong with this code?

foo :: Unit — Int
foo () =
let (x :: Ref Int) + alloc O
in if bar x then free x else read x

Deallocatable References

alloc ::a — Refa
bar :: Ref Int — Bool
free::Refa — a
read :: Refa — a

What can go wrong with this code?
Many things!

o What if bar frees x?

foo :: Unit — Int - Double free
foo () = - Use after free

let (x :: Ref Int) + alloc O
in if bar x then free x else read x

Google Pays Out $55,000 Bug Bounty for Chrome
Vulnerability

Google has released a Chrome 133 update to address four high-severity vulnerabilities reported by external researchers.

By lonut Arghire

February 13, 2025

TRENDING

Google Chrome | S
Vulnerability

New Windows Zer
Exploited by Chine:
Security Firm

Finastra Starts Noi
Impacted by Recer
Breach

Xerox Versalink Pri
Vulnerabilities Ena
Movement

Microsoft Warns o
XCSSET mac0s M:
New FinalDraft Mz
Spotted in Espiona

-

Russian State Hacl
Organizations Witk

Google on Wednesday announced the rollout of a Chrome browser update that Phishi
ishing

resolves four high-severity vulnerabilities that were reported by external

researchers. Singu_lr Launches
Funding for Al Sect

G Platf
The first issue is a use-after-free bug in the V8 JavaScript engine, tracked as overmance Flatio

CVE-2022-30211: Windows L2TP VPN Memory Leak and
New StackRot Linux kernel flaw allows privilege escalation Use after Free Vulnerability

W Forensics

", HH July 6,2023 MalBot Al (
New Pre-futh Double Free Yulnerability on ©]
Nettitude discovered a Memory Leak tuned Use after Free (UaF) bug in the Microsoft
[] I] @ "qq H implementation of the L2TP VPN protocol. The vulnerabilit affects most server and desktop
sl versions of Windows, dating back to Windows Server 2008 and Windows 7 respectively. This
could result in a Denial of Service (DoS) condition or could potentially be exploited to achieve
Remote Code Execution (RCE).

Threat Level Description

- An attack s highly likely. Additional and sustainable protective s

measures reflecting the broad nature of the threat combined with specific business a Mozilla fixes Firefox zero-day actively exploited in attacks

Mozilla has issued an emergency security update for the Firefox browser to address a critical use-
after-free vulnerabilty that is currently exploited in attacks.

BILLTOULAS 0CTOBER 09,2024 o1:34PM 1

SQLite patches use-after-free bug that left
apps open to code execution, denial-of-
service exploits

(Adobe stock)

Apple on Jan. 27 patched its first zero-day of 2025, a bug that the company confirmed was YOoRSH
actively exploited in the wild on 108 devices. More than one trllon SQLite databases potentially active in myriad operating systems, browsers, and applications

The bug — CVE-2025-24085 — was a "use after free” issue that was addressed with
improved memory management. The issue is fixed in vision0S 2.3, i0S 18.3 and iPad0S
18.3, macOS Sequoia 15.3, watchOS 11.3, tv0S 18.3.

Problem Invalid memory operations can introduce security-critical bugs.

Problem Invalid memory operations can introduce security-critical bugs.

Solution A compiler that statically detects and forbids invalid memory operations.
= Using a (substructural) type system!

Substructural Type Systems

Types and all that

What is a type?
o Simple Types: Unit, Int, Int — Bool
Give us information on the contents of variables/memory cells.
@ Substructural Types: Ref Int,Int —o Int
Additionally tells us how many times we can use things.

(choose:Unit=>Bool)

o Effect Types: Int Unit
Additionally tells us what kinds of effects it performs.

o Dependent types, Session types, ...

Type Systems and all that

What is a type system?
= A way to statically/gradually/dynamically enforce that types are obeyed.
= Described using formal typing rules that we compose to get typing derivations.

ABs
x:1,I'Fe:k

FE\x—e:7—k

Type Systems and all that

Simple Types: Ensure content of variables/memory satisfies their types:

Accepted @ ‘ Rejected ®
True :: Bool 256 :: Bool
\x—x + 1)0 True 0

Substructural Types: What exactly do we enforce here?
@ How to treat Ref Int, Int —o Int?

10

Affine Reference Types

To rule out memory errors related to references we need to treat (Ref a) affinely

We must use references at most once.

Accepted @

Rejected ®

let (x:: Ref Int) < alloc O in x

let (x :: Ref Int) < alloc O in (x,x)

let (x :: Ref Int) <— alloc O in free x

let (x :: Ref Int) < alloc O in free x;free x

let x < alloc O
in (\ () — free x)

let x < alloc 0 in
let £+ (\ () — freex)
inf O;f O

11

Affine Function Types

We said:
Accepted ©® ‘ Rejected ®
let x <—alloc O let x < alloc O in
in (N — freex) | let f+ (\ () — freex)
inf O;f O

Problem What type should we give to £7

12

Affine Function Types

We said:
Accepted ©® ‘ Rejected ®
let x <—alloc O let x < alloc O in
in (N — freex) | let f+ (\ () — freex)
inf O;f O

Problem What type should we give to £7

Solution Introduce a new affine function type (—o):
e a —o b: Must be called at most once

e a — b: Can be called any number of times

12

Deallocatable References @

Our substructural type system rejects
this program.

= The responsibility for

foo:: Unit — Int deallocating x falls to bar.
foo () =

let (x :: Ref Int) - alloc O

in if bar x then free x5 else read x
x is already used up by bar

13

Algebraic Effects and Handlers

Exception Handlers

Exceptions allow us to raise an error anywhere in the code:

add :: UInt — UInt ~2verflow), yrp¢

add xy = if (— x) < y then raise Overflow (x,y) else x+y

15

Exception Handlers

Exceptions allow us to raise an error anywhere in the code:

add :: UInt — UInt ~2verflow), yrp¢

add xy = if (— x) < y then raise Overflow (x,y) else x+y

And allow us to install handlers to service the error:

complexCode :: Unit — Maybe UInt
complexCode () =
handle ...add (workl ()) (work2 ())... by
Overflow (x,y) — printf x y;Nothing
| ret x — Just x

15

Effect Handlers

Exception handlers cannot resume the expression that raised the exception.
But what if we could?

= When overflow occurs, return as the result of add

16

Effect Handlers

Exception handlers cannot resume the expression that raised the exception.
But what if we could?

= When overflow occurs, return as the result of add

complexCode :: Unit — Maybe UInt
complexCode () =
handle ...add (workl ()) (work2 ())... by
Overflow (x,y) k — k
| ret x — Just x

16

Algebraic effects and handlers

It turns out that algebraic effects and handlers can express:
@ Non-determinism
@ Cooperative Concurrency
o State
@ and more ...
Retrofitted to OCaml and to research languages Links, Koka, Eff

17

Algebraic Effects

The source of the effects comes from operations:
Choose :: Unit = Bool

The function chooseInt (m,n) returns either m or n:

chooselInt :: (Int, Int) (Chooser:Unit=Bool), 1y

chooselnt (x,y) = if do Choose () then x else y

18

Algebraic Effects and Handlers

Handlers give meaning to operations such as Choose:
chooseFirst = handle ... by Choose () k — k True

k is a one-shot continuation: represents the remaining unevaluated program.
e.g. in chooseInt(m,n):

19

Algebraic Effects and Handlers

handle chooseInt(1,2) by Choose () k — k True

20

Algebraic Effects and Handlers

handle chooseInt(1,2) by Choose () k — k True
steps to
handle (if do Choose () then 1 else 2) by Choose () k — k True

20

Algebraic Effects and Handlers

handle chooseInt(1,2) by Choose () k — k True
steps to

handle (if do Choose () then 1 else 2) by Choose () k — k True
steps to

(\x — if x then 1 else 2) True

20

Algebraic Effects and Handlers

handle chooseInt(1,2) by Choose () k — k True
steps to

handle (if do Choose () then 1 else 2) by Choose () k — k True
steps to

(\x — if x then 1 else 2) True
steps to

if True then 1 else 2

20

Algebraic Effects and Handlers

steps to

steps to

steps to

steps to

handle chooseInt(1,2) by Choose () k — k True
handle (if do Choose () then 1 else 2) by Choose () k — k True
(\x — if x then 1 else 2) True

if True then 1 else 2

20

Algebraic Effects and Handlers

Alternatively we can collect all the possible results from calls to Choose:

collectAll = handle ... by
Choose () k — k True ++ k False
| ret x — [x]

k is called a multi-shot continuation here.

21

Algebraic Effects and Handlers

handle chooseInt(1,2) by
Choose () k — k True ++ k False
| ret x — [x]

22

Algebraic Effects and Handlers

handle chooseInt(1,2) by
Choose () k — k True ++ k False
| ret x — [x]
steps to
handle (if do Choose () then 1 else 2) by
Choose () k — k True ++ k False
| ret x — [x]

22

Algebraic Effects and Handlers

handle chooseInt(1,2) by
Choose () k — k True ++ k False
| ret x — [x]
steps to
handle (if do Choose () then 1 else 2) by
Choose () k — k True ++ k False
| ret x — [x]
steps to
(\x — [if x then 1 else 2]) True ++ (\x — [if x then 1 else 2]) False

22

Algebraic Effects and Handlers

handle chooseInt(1,2) by
Choose () k — k True ++ k False
| ret x — [x]
steps to
handle (if do Choose () then 1 else 2) by
Choose () k — k True ++k False
| ret x — [x]
steps to
(\x — [if x then 1 else 2]) True ++ (\x — [if x then 1 else 2]) False
steps to
[1,2]

22

Problem Statement

23

Problem Statement

What happens when we have both (deallocatable) references and effect handlers?

bad :: Ref Int (Choose::Unit=-Bool) Int

bad r = let x < chooseInt(1,2) in freer +x

24

Problem Statement

What happens when we have both (deallocatable) references and effect handlers?

bad - Ref Int (Choose::Unit=-Bool) Int

bad r = let x < chooseInt(1,2) in freer +x

Depends on the handler we install:

One-shot Choose ‘ Multi-shot Choose

chooseFirst (bad (alloc 0)) collectAll (bad (alloc 0))
No memory errors occur Double free occurs!

24

Problem Statement

When evaluating collectAll (bad (alloc 0)) we get a double-free:

;[let x4 1in freer—l—x]g—l—i—é[let X4 2in freer—i—x];

....................................

Because the reference r is captured in the multi-shot continuation!

25

Problem Substructurally treated references and multi-shot effects
can still break the memory safety guarantees.

26

Problem Substructurally treated references and multi-shot effects
can still break the memory safety guarantees.

Solution An effect system must also be substructural aware:
Needs to distinguish between one-shot and multi-shot effects.

26

Solution: Substructural (Type and Effect) System

Solution

A affine type and effect system that distinguishes one-shot from multi-shot effects:

One-shot ‘ Multi-shot

choose : Unit =o Bool . choose : Unit = Bool

@ One-shot effect: Can only be handled in a one-shot way (e.g. chooseFirst)
e Multi-shot effect: Can be handled in a multi-shot way (e.g. collectAll)
+ Forbid references from being captured in multi-shot continuations.

28

Solution

The bad function is not typeable:

(Choose::Unit=-Bool)

bad :: Ref Int > Int

bad r = let x < chooseInt(1,2) in free re +Xx
r is captured in a multi-shot continuation

Instead Choose must be typed as one-shot (=o):

good :: Ref Int (Choose::Unit=OBool) Int

good r = let x < chooseInt(1,2) in freer 4+ x

29

Semantic Typing

30

Semantic Typing

T Safet
Fe:{):7 Rt N
safe e here should mean:

= No usual type errors.
= No effects are left unhandled.

= Use-after-free, double-free errors do not happen!

safe e

31

Semantic Typing

Type Safet
|_€<>7_ % safee
A
&,
&)
%, &
S &
& >
4 X

[Fe:():7]

Types, effects, typing judgements are interpreted in the logic of Iris.

Fundamental: Each typing rule becomes a lemma.
Adequacy: Semantic type judgements imply expression safety.

32

The logic of Iris

We interpret types and judgments in the /ris separation logic:
P,Q,R € iProp:=True | False | PAQ|PVQ|Vx.P|3x. P|
l=v|PxQ|P—~Q|wpeg{P}|
oP|>P|[P]Y]...

Iris from the ground up

A modular foundation for higher-order concurrent separation logic

RALF JUNG ALES BIZJAK
MPLSWS, Germany Aarhus University, Denmark
(e-mail: jung@mpi-svs .org) (e-mail: abizjakecs .au.dk)
ROBBERT KREBBERS LARS BIRKEDAL
Delft University of Technology, The Netherlands Aarhus University, Denmark
(e-mail: mail@robbertkrebbers.nl) (e-mail: birkedal@cs . au.dk)
JACQUES-HENRI JOURDAN DEREK DREYER
MPIL-SWS, Germany MPI-SWS, Germany
(e-mail: jjourdan@npi -sws . org) (e-mail: dreyer@mpi-svs.org)

33

The logic of Iris
We interpret types and judgments in the /ris separation logic:
P,Q,R ciProp:=True | False | PAQ|PVQ|Vx. P|3x. P|
(0| P+Q| P Q| wpey{d}]
oP|>P|[PV]...

Iris from the ground up

A modular foundation for higher-order concurrent separation logic

RALF JUNG ALES BIZJAK
MPL-SWS, Germany Aarhus University, Denmark
(e-mail: jung@mpi-sus.org) (e-mail: abizjakecs.au. dk)
ROBBERT KREBBERS LARS BIRKEDAL
Delft University of Technology, The Netherlands Aarhus University, Denmark
(e-mail: mail@robbertkrebbers.nl) (e-mail: birkedal@cs.au.dk)
JACQUES-HENRI JOURDAN DEREK DREYER
MPL-SWS, Germany MPLSWS, Germany
(e-mail: jjourdanCmpi-svs . org) (¢-mail: dreyerCmpi-svs.org)

33

The logic of Iris

The type of propositions iProp is resource-aware:

) PxQ
Memory location / is allocated with value v P and @ reference distinct locations.
P —Q wp e 4 {P}
Resource-aware implication - Expression e diverges or terminates
- Performs effects according to protocol ¥
- Its resulting value satisfies predicate @

34

A program logic for effect handlers

Proof rules that allow us to reason about effectful programs:?

WP-VAL WP-IF-TRUE
v > (wp er ¢{P})
wp v {®} wp (if True then e; else e3) {P}
WP-Do WP-LoaD
Vopv® {—w
wp (do op v) ¢ {P} wpread { {v.v=wx*{— w}

Yde Vilhena and Pottier [POPL'21]

35

Interpretation into the logic

Define a logical relation:

[71, [x] € [Type]
[Bool]

['7]

[T +o x]

[o] € [Effect Signature]
[Va. 7 = K]

[io]

Value — iProp

Av.v = True V v = False

Av. o([r]v)

Av.Vw. [r]w = wp (v w) {Av. [5] v}

Value — (Value — iProp) — iProp
Av®. 3a. [rJvxo(Vw. [k] w -+ P w)
Av@. 3V [o]vd « (Vw. & w—* Pw)

Typing judgments are interpreted using wp and closing over the open term.

[CHe:p:

7] : iProp :=

36

The real work

The real work lies in proving the Fundamental lemma:

We have to prove every typing rule:

ABs
[x:7,T1Fe:p: K|

[CiF\x—=e: () : 7%k

37

Main Takeaways

@ Deallocatable References require a substructural type system.

@ Algebraic effects and Handlers are nice:
we can implement lots of abstractions using them.

@ If we want to have both we need a substructural (type and effect) system!

@ Semantic Typing is powerful: can prove type soundness of complicated type systems.

Affect: An Affine Type and Effect System

ORPHEAS VAN ROOIJ, Radboud University Nijmegen, Netherlands and University of Edinburgh, UK
ROBBERT KREBBERS, Radboud University Nijmegen, Netherlands

38

