
A Substructural Type and Effect System

Orpheas van Rooij1,2 Robbert Krebbers2

1University of Edinburgh

2Radboud University

February 2025

1

References + Effect Handlers =

2

Deallocatable References �

alloc :: a→ Ref a
bar :: Ref Int→ Bool
free :: Ref a→ a
read :: Ref a→ a

foo :: Unit→ Int
foo () =

let (x :: Ref Int)← alloc 0
in if bar x then free x else read x

What can go wrong with this code?

Many things!

3

Deallocatable References �

alloc :: a→ Ref a
bar :: Ref Int→ Bool
free :: Ref a→ a
read :: Ref a→ a

foo :: Unit→ Int
foo () =

let (x :: Ref Int)← alloc 0
in if bar x then free x else read x

What can go wrong with this code?
Many things!

What if bar frees x?
- Double free
- Use after free

3

4

5

Problem Invalid memory operations can introduce security-critical bugs.

Solution A compiler that statically detects and forbids invalid memory operations.
⇒ Using a (substructural) type system!

6

Problem Invalid memory operations can introduce security-critical bugs.

Solution A compiler that statically detects and forbids invalid memory operations.
⇒ Using a (substructural) type system!

6

Substructural Type Systems

7

Types and all that

What is a type?
Simple Types: Unit, Int, Int→ Bool
Give us information on the contents of variables/memory cells.
Substructural Types: Ref Int, Int ⊸ Int
Additionally tells us how many times we can use things.

Effect Types: Int ⟨choose:Unit⇒Bool⟩−−−−−−−−−−−−→ Unit
Additionally tells us what kinds of effects it performs.
Dependent types, Session types, . . .

8

Type Systems and all that

What is a type system?
⇒ A way to statically/gradually/dynamically enforce that types are obeyed.
⇒ Described using formal typing rules that we compose to get typing derivations.

Abs
x : τ,Γ ⊢ e : κ

Γ ⊢ \ x→ e : τ → κ

9

Type Systems and all that

Simple Types: Ensure content of variables/memory satisfies their types:

Accepted ¥ Rejected q

True :: Bool 256 :: Bool
(\ x→ x + 1) 0 True 0

Substructural Types: What exactly do we enforce here?
How to treat Ref Int, Int ⊸ Int?

10

Affine Reference Types

To rule out memory errors related to references we need to treat (Ref a) affinely

We must use references at most once.

Accepted ¥ Rejected q

let (x :: Ref Int)← alloc 0 in x let (x :: Ref Int)← alloc 0 in (x,x)

let (x :: Ref Int)← alloc 0 in free x let (x :: Ref Int)← alloc 0 in free x; free x

let x← alloc 0
in (\ ()→ free x)

let x← alloc 0 in
let f← (\ ()→ free x)
in f (); f ()

11

Affine Function Types

We said:

Accepted ¥ Rejected q

let x← alloc 0
in (\ ()→ free x)

let x← alloc 0 in
let f← (\ ()→ free x)
in f (); f ()

Problem What type should we give to f?

12

Affine Function Types

We said:

Accepted ¥ Rejected q

let x← alloc 0
in (\ ()→ free x)

let x← alloc 0 in
let f← (\ ()→ free x)
in f (); f ()

Problem What type should we give to f?

Solution Introduce a new affine function type (⊸):

a ⊸ b: Must be called at most once

a→ b: Can be called any number of times

12

Deallocatable References ⌣

foo :: Unit→ Int
foo () =

let (x :: Ref Int)← alloc 0
in if bar x then free xq else read xq

x is already used up by bar

Our substructural type system rejects
this program.
⇒ The responsibility for

deallocating x falls to bar.

13

Algebraic Effects and Handlers

14

Exception Handlers

Exceptions allow us to raise an error anywhere in the code:

add :: UInt→ UInt ⟨Overflow⟩−−−−−−−→ UInt
add x y = if (UINT_MAX− x) < y then raise Overflow (x,y) else x+ y

15

Exception Handlers

Exceptions allow us to raise an error anywhere in the code:

add :: UInt→ UInt ⟨Overflow⟩−−−−−−−→ UInt
add x y = if (UINT_MAX− x) < y then raise Overflow (x,y) else x+ y

And allow us to install handlers to service the error:

complexCode :: Unit→ Maybe UInt
complexCode () =

handle . . . add (work1 ()) (work2 ()) . . . by
Overflow (x,y)→ printf "Overflow detected:%d + %d" x y; Nothing
| ret x→ Just x

15

Effect Handlers

Exception handlers cannot resume the expression that raised the exception.
But what if we could?
⇒ When overflow occurs, return UINT_MAX as the result of add

16

Effect Handlers

Exception handlers cannot resume the expression that raised the exception.
But what if we could?
⇒ When overflow occurs, return UINT_MAX as the result of add

complexCode :: Unit→ Maybe UInt
complexCode () =

handle . . . add (work1 ()) (work2 ()) . . . by
Overflow (x,y) k→ k UINT_MAX
| ret x→ Just x

16

Algebraic effects and handlers

It turns out that algebraic effects and handlers can express:
Non-determinism
Cooperative Concurrency
State
and more . . .

Retrofitted to OCaml and to research languages Links, Koka, Eff

17

Algebraic Effects

The source of the effects comes from operations:

Choose :: Unit⇒ Bool

The function chooseInt (m,n) returns either m or n:

chooseInt :: (Int, Int) ⟨Choose::Unit⇒Bool⟩−−−−−−−−−−−−−→ Int
chooseInt (x,y) = if do Choose () then x else y

18

Algebraic Effects and Handlers

Handlers give meaning to operations such as Choose:

chooseFirst = handle . . . by Choose () k→ k True

k is a one-shot continuation: represents the remaining unevaluated program.
e.g. in chooseInt(m,n):

if do Choose () then m else n

k

19

Algebraic Effects and Handlers

handle chooseInt(1,2) by Choose () k→ k True

steps to
handle (if do Choose () then 1 else 2) by Choose () k→ k True

steps to
(\ x→ if x then 1 else 2) True

steps to
if True then 1 else 2

steps to
1

20

Algebraic Effects and Handlers

handle chooseInt(1,2) by Choose () k→ k True
steps to

handle (if do Choose () then 1 else 2) by Choose () k→ k True

steps to
(\ x→ if x then 1 else 2) True

steps to
if True then 1 else 2

steps to
1

20

Algebraic Effects and Handlers

handle chooseInt(1,2) by Choose () k→ k True
steps to

handle (if do Choose () then 1 else 2) by Choose () k→ k True
steps to

(\ x→ if x then 1 else 2) True

steps to
if True then 1 else 2

steps to
1

20

Algebraic Effects and Handlers

handle chooseInt(1,2) by Choose () k→ k True
steps to

handle (if do Choose () then 1 else 2) by Choose () k→ k True
steps to

(\ x→ if x then 1 else 2) True
steps to

if True then 1 else 2

steps to
1

20

Algebraic Effects and Handlers

handle chooseInt(1,2) by Choose () k→ k True
steps to

handle (if do Choose () then 1 else 2) by Choose () k→ k True
steps to

(\ x→ if x then 1 else 2) True
steps to

if True then 1 else 2
steps to

1

20

Algebraic Effects and Handlers

Alternatively we can collect all the possible results from calls to Choose:

collectAll = handle . . . by
Choose () k→ k True++ k False
| ret x→ [x]

k is called a multi-shot continuation here.

21

Algebraic Effects and Handlers

handle chooseInt(1,2) by
Choose () k→ k True++ k False
| ret x→ [x]

steps to
handle (if do Choose () then 1 else 2) by
Choose () k→ k True++ k False
| ret x→ [x]

steps to
(\ x→ [if x then 1 else 2]) True++(\ x→ [if x then 1 else 2]) False

steps to
[1, 2]

22

Algebraic Effects and Handlers

handle chooseInt(1,2) by
Choose () k→ k True++ k False
| ret x→ [x]

steps to
handle (if do Choose () then 1 else 2) by
Choose () k→ k True++ k False
| ret x→ [x]

steps to
(\ x→ [if x then 1 else 2]) True++(\ x→ [if x then 1 else 2]) False

steps to
[1, 2]

22

Algebraic Effects and Handlers

handle chooseInt(1,2) by
Choose () k→ k True++ k False
| ret x→ [x]

steps to
handle (if do Choose () then 1 else 2) by
Choose () k→ k True++ k False
| ret x→ [x]

steps to
(\ x→ [if x then 1 else 2]) True++(\ x→ [if x then 1 else 2]) False

steps to
[1, 2]

22

Algebraic Effects and Handlers

handle chooseInt(1,2) by
Choose () k→ k True++ k False
| ret x→ [x]

steps to
handle (if do Choose () then 1 else 2) by
Choose () k→ k True++ k False
| ret x→ [x]

steps to
(\ x→ [if x then 1 else 2]) True++(\ x→ [if x then 1 else 2]) False

steps to
[1, 2]

22

Problem Statement

23

Problem Statement

What happens when we have both (deallocatable) references and effect handlers?

bad :: Ref Int ⟨Choose::Unit⇒Bool⟩−−−−−−−−−−−−−→ Int
bad r = let x← chooseInt(1,2) in free r+ x

24

Problem Statement

What happens when we have both (deallocatable) references and effect handlers?

bad :: Ref Int ⟨Choose::Unit⇒Bool⟩−−−−−−−−−−−−−→ Int
bad r = let x← chooseInt(1,2) in free r+ x

Depends on the handler we install:

One-shot Choose Multi-shot Choose

chooseFirst (bad (alloc 0)) collectAll (bad (alloc 0))
No memory errors occur Double free occurs!

24

Problem Statement

When evaluating collectAll (bad (alloc 0)) we get a double-free:

[let x← 1 in free r+ x] ++ [let x← 2 in free r+ x]

k True k False

Because the reference r is captured in the multi-shot continuation!

25

Problem Substructurally treated references and multi-shot effects
can still break the memory safety guarantees.

Solution An effect system must also be substructural aware:
Needs to distinguish between one-shot and multi-shot effects.

26

Problem Substructurally treated references and multi-shot effects
can still break the memory safety guarantees.

Solution An effect system must also be substructural aware:
Needs to distinguish between one-shot and multi-shot effects.

26

Solution: Substructural (Type and Effect) System

27

Solution

A affine type and effect system that distinguishes one-shot from multi-shot effects:

One-shot Multi-shot

choose : Unit =◦ Bool choose : Unit⇒ Bool

One-shot effect: Can only be handled in a one-shot way (e.g. chooseFirst)
Multi-shot effect: Can be handled in a multi-shot way (e.g. collectAll)

+ Forbid references from being captured in multi-shot continuations.

28

Solution

The bad function is not typeable:

bad :: Ref Int ⟨Choose::Unit⇒Bool⟩−−−−−−−−−−−−−→ Int
bad r = let x← chooseInt(1,2) in free rq + x

r is captured in a multi-shot continuation

Instead Choose must be typed as one-shot (=◦):

good :: Ref Int ⟨Choose::Unit=◦Bool⟩−−−−−−−−−−−−−−→ Int
good r = let x← chooseInt(1,2) in free r+ x

29

Semantic Typing

30

Semantic Typing

⊢ e : ⟨⟩ : τ Type Safety
=======⇒ safe e

safe e here should mean:
⇒ No usual type errors.
⇒ No effects are left unhandled.
⇒ Use-after-free, double-free errors do not happen!

31

Semantic Typing

· ⊢ e : ⟨⟩ : τ Type Safety
=======⇒ safe e

Fundam
ental

========⇒ A
de
qu
ac
y

==
==
==
⇒

[[· ⊢ e : ⟨⟩ : τ]]

Types, effects, typing judgements are interpreted in the logic of Iris.

Fundamental: Each typing rule becomes a lemma.
Adequacy: Semantic type judgements imply expression safety.

32

The logic of Iris

We interpret types and judgments in the Iris separation logic:

P,Q,R ∈ iProp := True | False | P ∧Q | P ∨Q | ∀ x. P | ∃ x. P |
ℓ 7→ v | P ∗Q | P −∗ Q | wp eΨ{Φ} |
2P | ▷ P | P

N | . . .

33

The logic of Iris

We interpret types and judgments in the Iris separation logic:

P,Q,R ∈ iProp := True | False | P ∧Q | P ∨Q | ∀ x. P | ∃ x. P |

ℓ 7→ v | P ∗Q | P −∗ Q | wp eΨ{Φ} |

2P | ▷ P | P
N | . . .

33

The logic of Iris

The type of propositions iProp is resource-aware:

ℓ 7→ v P ∗Q
Memory location ℓ is allocated with value v P and Q reference distinct locations.

P −∗ Q wp eΨ{Φ}
Resource-aware implication - Expression e diverges or terminates

- Performs effects according to protocol Ψ
- Its resulting value satisfies predicate Φ

34

A program logic for effect handlers

Proof rules that allow us to reason about effectful programs:1

WP-Val
Φv

wp v {Φ}

WP-If-True
▷ (wp e1 Ψ{Φ})

wp (if True then e1 else e2)Ψ{Φ}

WP-Do
Ψ op v Φ

wp (do op v)Ψ{Φ}

WP-Load
ℓ 7→ w

wp read ℓ {v. v = w ∗ ℓ 7→ w}

1de Vilhena and Pottier [POPL’21]
35

Interpretation into the logic

Define a logical relation:

[[τ]], [[κ]] ∈ [[Type]] := Value→ iProp
[[Bool]] := λ v. v = True ∨ v = False

[[!τ]] := λ v. 2 ([[τ]] v)
[[τ

ρ−⊸ κ]] := λ v. ∀w . [[τ]]w −∗ wp (v w) [[ρ]]{λ v. [[κ]] v}

[[σ]] ∈ [[Effect Signature]] := Value→ (Value→ iProp)→ iProp
[[∀a⃗. τ ⇒ κ]] := λ v Φ. ∃ a⃗. [[τ]] v ∗ 2 (∀w . [[κ]]w −∗ Φw)

[[¡σ]] := λ v Φ. ∃Φ′. [[σ]] v Φ′ ∗ (∀w . Φ′ w −∗ Φw)

Typing judgments are interpreted using wp and closing over the open term.

[[Γ ⊢ e : ρ : τ]] : iProp := . . .

36

The real work

The real work lies in proving the Fundamental lemma:

· ⊢ e : ⟨⟩ : τ Type Safety
=======⇒ safe e

Fundam
ental

========⇒ A
de
qu
ac
y

==
==
==
⇒

[[· ⊢ e : ⟨⟩ : τ]]

We have to prove every typing rule:

Abs
[[x : τ ,Γ1 ⊢ e : ρ : κ]]

[[Γ1 ⊢ \ x→ e : ⟨⟩ : τ ρ−⊸ κ]]

37

Main Takeaways

1 Deallocatable References require a substructural type system.
2 Algebraic effects and Handlers are nice:

we can implement lots of abstractions using them.
3 If we want to have both we need a substructural (type and effect) system!
4 Semantic Typing is powerful: can prove type soundness of complicated type systems.

38

