modal (propositions as types)

1. propositions as types

a la Philip Wadler, 2015. Propositions as Types.

Bob is an authority

[hate authority

Do I hate Bob?

Bob is an authority

I hate authority

I hate Bob?!

need a language with unambiguous symbols

propositional logic

A B:= pqr,... | ANB|A=B| ...

BN A|®

7
()

BANAP®
A e g
A-T

ANDB

BANA= ANAB =17

@

BAAF BAAF
A ’ B -
AN B A
B

=
ok

typed-lambda calculus

AB:=71|AxB|A—>B]| ...

I''z:AFt: B
I'FXz.t:A— B

I't:A—- B TI'Fu:A
I'Htu: B

I'Ft: Ax B
I'Hfstt: A

I'Ft: Ax B
['Fsndt: B

I't:A T'Fu:B

' (t,u): Ax B

Az. (snd z, fst 2)

2:BXxXAFz2z:BxA 2z2z:BxAFz:Bx A
z: BxAFsndz: A z: Bx ArF1{stz: B

z:Bx Al (sndz,fstz): Ax B

Az (sndz,fstz) : Bx A— Ax B

Az.snd (snd z, fst 2)

i prog.

Az.1st 2

z:BxAl—z@z:BxAl—z:BxA

z:BxAl—si\dz:A /Z:BX/A/I—fStZ\Q\

2: B x A+{sndz,fst 2§ : A x B \

FXz:BXxA). (sndz,fstz):[BxA—AxB

Bl ...
—
AANB| A
r,...

P, q,

B|A—B
T | AX

propositions as types

I''z:AFt: B

I'FXz.t: A— B

propositions as types

proofs as programs

propositions as types

proofs as programs

roof rog.
3 . $ o

wWROCQ

is propositions as types useful?

3V {7 Agdo

THEOREM PROVER

theorem proving for hackers

ii. modal operators

authority necessarily threatens individuality

authority possibly threatens individuality

A : necessarily A

OA : possibly A

A=A

A= 0OA
OOA = QA

class Functor f where
fmap :: (a ->b) >f a->f1b

class Functor m => Monad m where
return :: a -> m a
join :m (ma) ->m a

class Functor w => Comonad w where
extract ' w a -> a
duplicate :: wa ->w (w a)

WA : comonadic A

MA : monadic A

A= A WA — A
A= 0O0A WA — WOWVA)
A= OA A— MA
OOA = QA M(MA) — MA

A as? WA
OA as? MA

=

Information

Information and Computation
Volume 137, Issue 1, 25 August 1997, Pages 1-33 -

ol VN

ELSEVIER

Regular Article

Propositional Lax Logic

; a g b . o o
Matt Fairtlough %, Michael Mendler Computational types from a logical perspective

Published online by Cambridge University Press: 01 March 1998

Show more v

P. N. BENTON, G. M. BIERMAN and V. C. V. DE PAIVA

1

A judgmental reconstruction of modal logic

Published online by Cambridge University Press: 25 July 2001 Rights & Permissions

FRANK PFENNING and ROWAN DAVIES

m vetrics | A modal analysis of staged computation

Authors: Rowan Davies, Frank Pfenning Authors Info & Claims
Save PDF ’ ~

Journal of the ACM (JACM), Volume 48, Issue 3 « Pages 555 - 604 « https://doi.org/10.1145/382780.382785

Published: 01 May 2001 Publication History (s oidates

“Some claim that each of these variants has an interpretation as a
form of computation via Propositions as Types, and a down
payment on this claim is given by an interpretation of
S4 as staged computation due to Davies and Pfenning [16]”

- Philip Wadler, 2015. Propositions as Types

“Benton, Bierman, and de Paiva [4] observed that monads
correspond to yet another modal logic, differing from all of S1—S5.”

- Philip Wadler, 2015. Propositions as Types.

conundrums

(A— B) > MA —- MB
C(AV B) < OAV OB

iii. modal (propositions as types)

propositions as types

as prograrmns

rog.
. 3 b

proof system for modal logic?

which modal logic?!

more modal logics than proof systems

propositions as types

as programs

as i prog.

is propositions as types a coincidence?

propositions and types are both meaningless

intrinsically
propositions and types are both meaningless
A

[propositions] as [types]

as [programs]

as ~> [prog.]

Bob is an authority

I hate authority

I hate Bob?!

Possible-world semantics

[Bob is an authority J@wi

[Thate authority J@w2

[Ihate Bob J@?!

”LU — V(paw)
|w = [A]w X [B]w

w=Vw.wECw = [Alw = [Blw

M. Az, (snd z,fst z) : [BAA= AN By

(W, E, R, V)

o
IC0A]., — Vo wRv — 1Al
[0A]w = Yv. wRv x |A],

18 a comonad when R i1s reflexive and transitive

O 18 a monad when R is reflexive and transitive

O 1s strong when R is included in

Maybe is not a ¢

A ¥ wA
OCA ¥ MA

A a WHA
CA as MpA

new plan: study semantics of modal logic by
embedding modalities in type theory

my takeaway: study semantics

[propositions] as [types]

[propositions] as [types]

constructive entailment as [programs]

> ent. as ~> [prog.]

can modal (propositions as types) be useful?

modal logicians study classes of modal logics

PL research can benefit from
studying classes of calculi

THE UNIVERSITY

of EDINBURGH

Home Research output Profiles Research units Projects Datasets Prizes Activities <« Search... Q

Compositional Normalisation with Modal Types

Valliappan, Nachi (Principal Investigator), Lindley, Sam (Sponsor)

School of Informatics, Laboratory for Foundations of Computer Science
N§ Overview

Project Details

Status Active
Effective start/end date 1/03/24 > 28/02/27

0 5 =
— + Automatic Zoom L T Z2 @ & »

nachivpn.me,

Compositional Normalisation with Modal Types
Nachiappan Valliappan, Chalmers University of Technology

Introduction

Normalisation: In the design and implementation of programming languages, normalisation is a concept of central
importance. Normalisation is the process of transforming a complex expression in a language to a canonical form while
preserving its meaning. For example, transforming the integer expression 2+ 2 % (z — 1) to the canonical form 2 x z is an
instance of normalisation. Normalisation may have several objectives:

o Defining and checking program equivalence: Two expressions are equal if they have the same canonical form. To
check if the integer expressions 2+ 2 % (z — 1) and 4 % (z — 1) are equal, we normalise them to 2%z and (4 xz) — 4
respectively, and observe that they are not equal unless z = 2. Normalisation is used to check the equivalence of
programs in the implementation of dependently typed languages and proof assistants.

o Implementing program optimisation: Normalisation can be used to optimise a program. The integer expression
2+ 2 (z — 1) contains the unnecessary overhead of evaluating known arithmetic operations on literal numbers,
such as 2% —1 and 2 — 2. This overhead can be removed by optimally replacing the expression 2 + 2 % (z — 1) by
2 % z. Such optimisations are commonplace in most programming language compilers and runtime toolchains.

o Proving properties of complex type systems: Type systems are a programming language feature that enable the
prevention of program errors. Type systems prevent a program, for example, from accidentally adding an integer
to a string as 2 + "hello" by ensuring that + is only applied to integer arguments. The integrity of a type system
lies in its ability to ensure that a value is correctly associated with its type as 2 : Int, meaning the expression 2
has the integer type Int, and not, for example, incorrectly as "hello" : Int. This property, known as canonicity,
follows immediately from normalisation.

The problem: Normalisation is in general difficult to achieve since it lacks compositionality. This means that there is no
known general way to develop normalisation for fragments of the language and then conveniently combine them together
to achieve normalisation for the language as a whole. Current methods used to develop normalisation rely excessively on
the syntax of the language, which makes them brittle and sensitive to changes in the syntax. When the syntax of the
language evolves due to modification or extension, as it almost always does in practice, the normalisation algorithm
may need to be revisited entirely. To circumvent this problem, normalisation is currently either abandoned entirely or
proved using ad hoc means that are specific to a particular language. This poses the risk of a foundational crisis in
programming language research since languages either lack fundamental properties that follow from normalisation or the
corresponding development lacks reusability beyond the particular language under consideration.

Modal types: Type systems alleviate the difficulty with normalisation to a certain degree by allowing us to dissect
the language using types. Type-directed normalisation algorithms enjoy some compositionality, to the extent of the
expressiveness of the type system. Modal types improve the expressiveness of a type system and thus provide a deeper
decomposition of the language, allowing us to further dissect a language. Unlike traditional type systems that only
specify the values of a program in its type, modal type systems also specify the behaviour of a program in its type. For

nachivpn.me O github.com/nachivpn

https://nachivpn.me/
https://github.com/nachivpn/

iv. shoutout

TypeSig ¥ you!

ADVENT

An Advent of Code style

proof competition
running from Dec 12st

to Dec 25th.

organic collective embodiment of
propositions as types!

a proof theorist’s dream

not as an obligation
but for the pleasure of
constructing one

[¥ TypeSig!

Prop

[¥ TypeSig!

/nachi

