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Overview

In this talk, I will

I give a quick introduction to Links
I explain what are linear types (and session types)
I explain what are algebraic effects and handlers
I break Links by using them together
I fix Links by tracking control-flow linearity
I show how to further improve Links

Feel free to interrupt me at any time!
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Functional Programming in Links

Links is a functional programming language.

> linx --set=show_kinds=hide # start REPL with a clean output of types

Welcome to Links version 0.9.8 (Burghmuirhead)

links> 1+2+3;

6 : Int

links> println("Hello world!");

Hello world!

() : ()

links> fun inc(x) { x+1 };

inc = fun : (Int) -> Int

4
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Parametric Polymorphism in Links

Links supports parametric polymorphism.

A polymorphic function can be reused with different types.

links> fun id(x) { x };

id = fun : (a) -> a # as usual, the prefix ``forall a'' is omitted

links> id(42); # instantiate a to Int

42 : Int

links> id(true); # instantiate a to Bool

true : Bool

links> id("Hello world!"); # instantiate a to String

"Hello world!" : String
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Linear types restrict the usage of values

Some resources like file handles and communication channels are linear.

Linear values cannot be discarded or duplicated, while unlimited values can.

Linear types statically guarantee this property.

links> typename Channel = !Int.End; # an alias for a primitive linear type

Channel = !(Int).End

links> fun dupLin(ch:Channel) { (ch, ch) };

Type error: Variable ch has linear type `Channel' but is used 2 times.

links> fun discardLin(ch:Channel) { 42 };

Type error: Variable ch has linear type `Channel' but is used 0 times.

6



Linear types restrict the usage of values

Some resources like file handles and communication channels are linear.

Linear values cannot be discarded or duplicated, while unlimited values can.

Linear types statically guarantee this property.

links> typename Channel = !Int.End; # an alias for a primitive linear type

Channel = !(Int).End

links> fun dupLin(ch:Channel) { (ch, ch) };

Type error: Variable ch has linear type `Channel' but is used 2 times.

links> fun discardLin(ch:Channel) { 42 };

Type error: Variable ch has linear type `Channel' but is used 0 times.

6



Linear types restrict the usage of values

Some resources like file handles and communication channels are linear.

Linear values cannot be discarded or duplicated, while unlimited values can.

Linear types statically guarantee this property.

links> typename Channel = !Int.End; # an alias for a primitive linear type

Channel = !(Int).End

links> fun dupLin(ch:Channel) { (ch, ch) };

Type error: Variable ch has linear type `Channel' but is used 2 times.

links> fun discardLin(ch:Channel) { 42 };

Type error: Variable ch has linear type `Channel' but is used 0 times.

6



Linear types restrict the usage of values

Some resources like file handles and communication channels are linear.

Linear values cannot be discarded or duplicated, while unlimited values can.

Linear types statically guarantee this property.

links> typename Channel = !Int.End; # an alias for a primitive linear type

Channel = !(Int).End

links> fun dupLin(ch:Channel) { (ch, ch) };

Type error: Variable ch has linear type `Channel' but is used 2 times.

links> fun discardLin(ch:Channel) { 42 };

Type error: Variable ch has linear type `Channel' but is used 0 times.

6



Linear types restrict the usage of values

Some resources like file handles and communication channels are linear.

Linear values cannot be discarded or duplicated, while unlimited values can.

Linear types statically guarantee this property.

links> typename Channel = !Int.End; # an alias for a primitive linear type

Channel = !(Int).End

links> fun dupLin(ch:Channel) { (ch, ch) };

Type error: Variable ch has linear type `Channel' but is used 2 times.

links> fun discardLin(ch:Channel) { 42 };

Type error: Variable ch has linear type `Channel' but is used 0 times.

6



Linear types restrict the usage of values

Some resources like file handles and communication channels are linear.

Linear values cannot be discarded or duplicated, while unlimited values can.

Linear types statically guarantee this property.

links> typename Channel = !Int.End; # an alias for a primitive linear type

Channel = !(Int).End

links> fun dupLin(ch:Channel) { (ch, ch) };

Type error: Variable ch has linear type `Channel' but is used 2 times.

links> fun discardLin(ch:Channel) { 42 };

Type error: Variable ch has linear type `Channel' but is used 0 times.

6



How does Links determine the linearity of types?

Links knows the linearity of primitive types by default.

I Channel is linear
I Int, Bool and String are unlimited

Links knows the linearity of (most of) data types by looking at their components.

I (Int, Channel) is linear
I (Int, Bool, String) is unlimited

Links requires functions to be explicitly annotated with their linearity.
links> fun inc(x) { x+1 };

inc = fun : (Int) -> Int

links> linfun inc(x) { x+1 };

inc = fun : (Int) -@ Int # called ``lollipop'' 🍭
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How does Links determine the linearity of type variables?

Links tells the linearity of type variables by their kinds.

> linx # start REPL with kinds output

Welcome to Links version 0.9.8 (Burghmuirhead)

links> fun id(x) { x };

id = fun : (a::Any) -> a::Any

a::Any can be instantiated to any types

links> fun dup(x) { (x, x) };

dup = fun : (a) -> (a, a)

a::Unl (omitted by default) must be instantiated to unlimited types
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Session Types in Links

Session types characterise communication protocols. Session types are linear.

typename Channel = !Int.End # define an alias of a session type

sig sender : (Channel) ~> () # Channel = !Int.End

fun sender(c) {

var c' = send(42, c); # c:!Int.End : send a value of type Int, then End

close(c') # c':End : no further communication

}

sig receiver : (~Channel) ~> () # dual of Channel = ?Int.End

fun receiver(c) {

var (i, c') = receive(c); # c:?Int.End : receive a value of type Int, then End

close(c'); # c':End : no further communication

println(intToString(i))

}
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Connect Sender and Receiver

Fork the receiver and pass the dual channel endpoint to the sender.

links> { var c = fork(receiver); sender(c) };

42

() : ()

10



Well-typed programs in Links CANNOT go wrong ?

Let’s try to hack Links by duplicating a linear channel!

links> { var c = fork(receiver); sender(c); sender(c); }; # simply use c twice

Type error: Variable c has linear type `!Int.End' but is used 2 times.

links> { var c = fork(receiver);

var f = fun(){ sender(c) }; f(); f() }; # capture c in a function

Type error: Variable c of linear type `!Int.End' is used in a non-linear function.

links> { var c = fork(receiver);

var f = linfun(){ sender(c) }; f(); f() }; # capture c in a linear function

Type error: Variable f has linear type `() -@ ()' but is used 2 times.

11
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Effects

Programs must interact with their environment.

E↵ects

Programs must interact with their environment E↵ects are pervasive

I input/output
user interaction

I concurrency
web applications

I distribution
cloud computing

I exceptions
fault tolerance

I choice
backtracking search

Typically ad hoc and hard-wiredPicture from Sam Lindley
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Algebraic Effects and Handlers

Composable and customisable user-defined interpretation of effects in general.

Growing industrial interest

E↵ect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic e↵ects, ESOP 2009

Composable and customisable user-defined interpretation of e↵ects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Growing industrial interest

semantic Code analysis library (> 25 million repositories)

React
JavaScript UI library (> 2 million websites)

Pyro
Statistical inference (10% ad spend saving)

Table from Sam Lindley
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Defining Println

The built-in println function in Links always prints its argument.
> linx --enable-handlers

Welcome to Links version 0.9.8 (Burghmuirhead)

links> println("Hello world!");

Hello world!

() : ()

links> handle (do Println("Hello world!")) { # user-defined algebraic operation

case <Println(s) => r> -> # s = "Hello world!", r = continuation

println(s); # print the parameter

r(()) # resume the continuation

}

Hello world!

() : ()
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Customising Println

One of the advantages of algebraic effects and handlers is that we can give different
interpretations of the same operation without changing its syntax.

links> handle (do Println("Hello world!")) {

case <Println(s) => r> ->

println("Print twice: " ^^ s ^^ " " ^^ s); r(())

};

Print twice: Hello world! Hello world!

() : ()

links> handle (do Println("Hello world!")) {

case <Println(s) => r> ->

println("I don't want to print :("); r(())

};

I don't want to print :(

() : ()
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Implementing Nondeterminism

sig ndprinter : () { Choose: () => Bool | _ }~> ()

# the function type is decorated with an effect type { Choose: () => Bool | _ }

# which means this function may use the Choose operation

# which takes no parameter and returns a boolean value

# _ is an anonymous effect variable which can be instantiated to other operations

fun ndprinter() { var i = if (do Choose) then 42 else 84; printInt(i) }

links> handle (ndprinter())

{ case <Choose => r> -> r(true) }; # one-shot handler

# fun r(b) { var i = if (b) then 42 else 84; printInt(i) }

42

links> handle (ndprinter())

{ case <Choose => r> -> r(true); r(false) }; # multi-shot handler

42 84
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Breaking Links



Well-typed programs in Links CAN go wrong !

We can break Links by duplicating a linear channel with multi-shot effect handlers!

sig ndsender : (!Int.End) { Choose: () => Bool | _ }~> ()

fun ndsender(c) {

var x = if (do Choose) then 42 else 84; # choose an integer to send

var c' = send(x, c); # send x to c

close(c') # close the remaining c'

}

links> handle ({ var c = fork(receiver); ndsender(c) })

{ case <Choose => r> -> r(true); r(false) };

42***: Internal Error in evalir.ml : NotFound chan_3 while interpreting.

continuation of Choose:

fun r(b) { var x = if (b) then 42 else 84;

var c' = send(x, c); # c is captured in the continuation

close(c') } # it is closed when excuting r(true)
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Why doesn’t Links reject us using r twice?

sig ndsender : (!Int.End) { Choose: () => Bool | _ }~> ()

fun ndsender(c) {

var x = if (do Choose) then 42 else 84;

var c' = send(x, c);

close(c')

}

continuation of Choose:

fun r(b) { var x = if (b) then 42 else 84; var c' = send(x, c); close(c') }

18
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var x = if (do Choose) then 42 else 84;

var c' = send(x, c);

close(c')

}

continuation of Choose:

fun r(b) { var x = if (b) then 42 else 84; var c' = send(x, c); close(c') }

One point of view:
Conventional linear type systems only track value linearity, i.e., linearity of primitive
values, pairs, functions, etc. They already exist in the source code in the form of values.
However, the continuation function r of Choose is dynamically created during evaluation.
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sig ndsender : (!Int.End) { Choose: () => Bool | _ }~> ()

fun ndsender(c) {

var x = if (do Choose) then 42 else 84;

var c' = send(x, c);

close(c')

}

continuation of Choose:

fun r(b) { var x = if (b) then 42 else 84; var c' = send(x, c); close(c') }

Another point of view:
Conventional linear type systems assume that the control flow goes normally from the
beginning to the end. It only enters the continuation of do Choose once.
However, effect handlers allow the control flow to jump back to do Choose.
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Why doesn’t Links reject us using r twice?

sig ndsender : (!Int.End) { Choose: () => Bool | _ }~> ()

fun ndsender(c) {

var x = if (do Choose) then 42 else 84;

var c' = send(x, c);

close(c')

}

continuation of Choose:

fun r(b) { var x = if (b) then 42 else 84; var c' = send(x, c); close(c') }

Solution: track control-flow linearity in addition to value linearity.
I A control-flow-linear operation: the control flow must enter its cont exactly once.
I A control-flow-unlimited operation: the control flow may enter its cont any times.
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Fixing Links



Tracking Control-Flow Linearity in Links

sig ndsender :

(!Int.End)

{ Choose: () => Bool

| _ }~>

()

fun ndsender(c) {

# by default, the control-flow linearity is unlimited

var x = if (do Choose)

then 42 else 84;

var c' = send(x, c);

close(c')

}

Ill-typed because we cannot use the linear variable c in a control-flow-unlimited
environment after the control-flow-unlimited operation Choose. 19



Tracking Control-Flow Linearity in Links

sig ndsender :

(!Int.End)

{ Choose: () =@ Bool # annotate Choose as control-flow linear 🍭

| _ }~>

()

fun ndsender(c) {

# by default, the control-flow linearity is unlimited

var x = if (do Choose)

then 42 else 84;

var c' = send(x, c);

close(c')

}
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close(c')

}
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| _::Lin }~> # require other potential operations to be linear

()

fun ndsender(c) {

xlin; # switch the control-flow linearity to linear

var x = if (lindo Choose) # invoke a control-flow-linear operation

then 42 else 84;

var c' = send(x, c);

close(c')

}

Well-typed since we are using a linear variable c and a control-flow-linear operation
Choose in a control-flow-linear environment. 19



Back to the Full Example

sig receiver : (?Int.End) { | _ }~> ()

fun receiver(c) { var (i, c') = receive(c); close(c'); printInt(i) }

sig ndsender : (!Int.End) {Choose: () => Bool | _ }~> ()

fun ndsender(c) { close(send(if (do Choose) 42 else 84, c)) }

links> handle ({ var c = fork(receiver); ndsender(c) })

{ case <Choose => r> -> r(true); r(false) };

42***: Internal Error in evalir.ml : NotFound chan_3 while interpreting.
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Back to the Full Example

sig receiver : (?Int.End) { | _::Lin }~> ()

fun receiver(c) { xlin; var (i, c') = receive(c); close(c'); printInt(i) }

sig ndsender : (!Int.End) {Choose: () =@ Bool | _::Lin }~> ()

fun ndsender(c) { xlin; close(send(if (lindo Choose) 42 else 84, c)) }

links> handle ({ xlin; var c = fork(receiver); ndsender(c) })

{ case <Choose => r> -> xlin; r(true); r(false) };

Type Error: ... =@ does not match => ...
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fun receiver(c) { xlin; var (i, c') = receive(c); close(c'); printInt(i) }

sig ndsender : (!Int.End) {Choose: () =@ Bool | _::Lin }~> ()

fun ndsender(c) { xlin; close(send(if (lindo Choose) 42 else 84, c)) }

links> handle ({ xlin; var c = fork(receiver); ndsender(c) })

{ case <Choose =@ r> -> xlin; r(true); r(false) };

# use =@ for handler clauses of control-flow-linear operations

Type Error: Variable r has linear type but is used 2 times.

Well-typed programs cannot go wrong!
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Beyond Links



Restriction of Linear Types and Control-Flow Linearity in Links

We lose principal types. As a result, we need to have different versions of (almost) the
same function with different types, which breaks modularity and reusability.

Consider the verbose identity function

fun verboseId(x) {do Print("id"); x}
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We lose principal types. As a result, we need to have different versions of (almost) the
same function with different types, which breaks modularity and reusability.

Consider the verbose identity function

fun verboseId(x) {do Print("id"); x}

Without linear types, we only need one version of it with the type

sig verboseId : (a) { Print : (String) => () | _ }-> a

fun verboseId(x) {do Print("id"); x}
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Restriction of Linear Types and Control-Flow Linearity in Links

We lose principal types. As a result, we need to have different versions of (almost) the
same function with different types, which breaks modularity and reusability.

Consider the verbose identity function

fun verboseId(x) {do Print("id"); x}

With linear types, we have two versions

sig verboseId : (a::Any) { Print : (String) => () | _ }-> a::Any

fun verboseId(x) {do Print("id"); x}

sig verboseId : (a::Any) { Print : (String) => () | _ }-@ a::Any

linfun verboseId(x) {do Print("id"); x}
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Restriction of Linear Types and Control-Flow Linearity in Links

We lose principal types. As a result, we need to have different versions of (almost) the
same function with different types, which breaks modularity and reusability.

Consider the verbose identity function

fun verboseId(x) {do Print("id"); x}

Further with control-flow linearity, we have six versions

sig verboseId : (a) { Print : (String) => () | _ }-> a

fun verboseId(x) {do Print("id"); x}

sig verboseId : (a) { Print : (String) =@ () | _ }-> a

fun verboseId(x) {lindo Print("id"); x}

sig verboseId : (a::Any) { Print : (String) =@ () | _::Lin }-> a::Any

fun verboseId(x) {xlin; lindo Print("id"); x}

linfun ... linfun ... linfun ... 21



Principal Types with Constraints

We can restore principal types in Links using constraints / qualified types

sig verboseId : a { Print : (String) =>q () | d }->q
′
a with (a � q, a � d)

fun verboseId(x) {do Print("id"); x}

->q
′ can be instantiated to either -> or -@

=>q can be instantiated to either => or =@ satisfying the condition that when a is a linear
type, it must be =@

d can either have kind Lin or Any satisfying the condition that when a is a linear type, it
must have kind Lin
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More in the Paper

F◦eff system-F style
subkinding-based linear types [Mazurak et al. 2010]
row-based effect types [Hillerström and Lindley 2016]
implementation in Links
metatheory (type soundness and runtime linearity safety)

Q◦
eff ML style

qualified linear types based on Quill [Morris 2016]
qualified effect types based on Rose [Morris and McKinna 2019]
type inference with principal types
deterministic constraint solving
metatheory (soundness and completeness of type inference)
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Takeaway: consider tracking control-flow linearity
when having both linear types and effect handlers in your languages!

Picture by Xueying Qin

control-flow linearitylinear types effect handlers
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